Théorème de Plancherel

extension de la transformation de Fourier aux fonctions de carré sommable

Le théorème de Plancherel permet d'étendre la transformation de Fourier aux fonctions de carré sommable. Il fut démontré par le mathématicien Michel Plancherel[1].

Énoncé

modifier

Soit   une fonction de carré sommable sur   et soit  . On peut définir la transformée de Fourier de la fonction tronquée à   :  

Alors lorsque   tend vers l'infini, les fonctions   convergent en moyenne quadratique (c'est-à-dire pour la norme  ) vers une fonction qu'on note   et que l'on appelle transformée de Fourier (ou de Fourier-Plancherel) de  .

En outre, la formule d'inversion de Fourier est vérifiée : la fonction   est elle-même de carré sommable et on a (au sens de la norme  ) :  

Ainsi, la transformation de Fourier-Plancherel définit un automorphisme de l'espace L2. De plus, c'est une isométrie de cet espace de Hilbert :

 

ou, ce qui est équivalent :

 .

Cette définition est compatible avec la définition habituelle de la transformée de Fourier des fonctions intégrables.

Généralisations

modifier

Le théorème de Plancherel se généralise dans le cas où la transformée de Fourier est définie sur de nombreux groupes, on peut citer les groupes abéliens localement compacts (cf. Dualité de Pontryagin), dont l'exemple le plus simple est celui des groupes abéliens finis (cf. Analyse harmonique sur un groupe abélien fini).

Notes et références

modifier
  1. Michel Plancherel, « Contribution à l'étude de la représentation d'une fonction arbitraire par les intégrales définies », Rendiconti del Circolo Matematico di Palermo, Circolo Matematico di Palermo, vol. 30,‎ , p. 298-335.

Lien externe

modifier

(en) Eric W. Weisstein, « Plancherel's Theorem », sur MathWorld